Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nutr Biochem ; 119: 109384, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37209954

RESUMO

Sesamol, an active component in sesame seeds, is known for its health benefits. However, its effect on bone metabolism remains unexplored. The present study aims to investigate the effect of sesamol on growing, adult and osteoporotic skeleton and its mechanism of action. Sesamol at various doses were administered orally to growing, ovariectomized, and ovary-intact rats. Alterations in bone parameters were examined using micro-CT and histological studies. Western blot and mRNA expression from long bones were performed. We further evaluated the effect of sesamol on osteoblast and osteoclast function and its mode of action in the cell culture system. These data showed that sesamol was able to promote peak bone mass in growing rats. However, sesamol had the opposite effect in ovariectomized rats, evident from gross deterioration of trabecular and cortical microarchitecture. Concurrently, it improved the bone mass in adult rats. In vitro results revealed that sesamol enhances the bone formation by stimulating osteoblast differentiation through MAPK, AKT, and BMP-2 signaling. In contrast, it enhances osteoclast differentiation and expression of osteoclast-specific genes in osteoclast differentiation medium. Interestingly, in presence of estrogen, the effect reversed and sesamol decreased osteoclast differentiation, in vitro. Sesamol improves bone microarchitecture in growing and ovary-intact rats, whereas it enhances the bone deterioration in ovariectomized rats. While sesamol promotes bone formation, its opposing effect on the skeleton can be attributed to its dual effect on osteoclastogenesis in presence and absence of estrogen. These preclinical findings suggest a special attention towards the detrimental effect of sesamol in postmenopausal women.


Assuntos
Osteoclastos , Ovário , Humanos , Ratos , Feminino , Animais , Ratos Sprague-Dawley , Ovariectomia , Estrogênios
2.
J Biol Chem ; 298(9): 102324, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35931113

RESUMO

Cholesterol is one of the essential intrauterine factors required for fetal growth and development. Maternal high cholesterol levels are known to be detrimental for offspring health. However, its long-term effect on offspring skeletal development remains to be elucidated. We performed our studies in two strains of mice (C57BL6/J and Swiss Albino) and human subjects (65 mother-female newborn dyads) to understand the regulation of offspring skeletal growth by maternal high cholesterol. We found that mice offspring from high-cholesterol-fed dams had low birth weight, smaller body length, and delayed skeletal ossification at the E18.5 embryonic stage. Moreover, we observed that the offspring did not recover from the reduced skeletal mass and exhibited a low bone mass phenotype throughout their life. We attributed this effect to reduced osteoblast cell activity with a concomitant increase in the osteoclast cell population. Our investigation of the molecular mechanism revealed that offspring from high-cholesterol-fed dams had a decrease in the expression of ligands and proteins involved in hedgehog signaling. Further, our cross-sectional study of human subjects showed a significant inverse correlation between maternal blood cholesterol levels and cord blood bone formation markers. Moreover, the bone formation markers were significantly lower in the female newborns of hypercholesterolemic mothers compared with mothers with normal cholesterolemic levels. Together, our results suggest that maternal high cholesterol levels deleteriously program offspring bone mass and bone quality and downregulate the hedgehog signaling pathway in their osteoblasts.


Assuntos
Colesterol , Dieta Hiperlipídica , Proteínas Hedgehog , Hipercolesterolemia , Troca Materno-Fetal , Osteoblastos , Osteogênese , Efeitos Tardios da Exposição Pré-Natal , Animais , Colesterol/efeitos adversos , Estudos Transversais , Dieta Hiperlipídica/efeitos adversos , Regulação para Baixo , Feminino , Proteínas Hedgehog/metabolismo , Humanos , Recém-Nascido , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/metabolismo , Gravidez , Transdução de Sinais
3.
Phytomedicine ; 99: 154024, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35263671

RESUMO

BACKGROUND: Sida cordifolia is traditionally found in the Indian system of medicine, well known for its medicinal and nutritional properties among local natives. PURPOSE: The present study aims to investigate the osteo-protective effect of root and leaf ethanolic extract of S. cordifolia (RE and LE) and its underlying mechanism. METHODS: Antioxidant activity of RE and LE was assessed. Total phenolic and flavonoid content were determined. HPLC profiling of RE and LE was performed to examine the polyphenol content. The effect of RE and LE on osteoblast cells proliferation, differentiation, mineralization, and expression of the protein associated with osteogenesis were evaluated using primary calvarial osteoblast culture. Skeletal effects of RE and LE of S. cordifolia were investigated in C57BL/6J ovariectomized mice. Micro CT was employed to evaluate the alteration in trabecular and cortical bone microarchitecture. Histology studies were performed on the isolated vertebra. qPCR analysis and western blotting was done to check the key bone markers. RESULTS: RE and LE showed a potent antioxidant activity, owing to a notable polyphenol content. Both RE and LE did not alter the cell viability but significantly increased the osteoblast cell proliferation, differentiation, and mineralization. Moreover, they enhanced the mRNA expression of osteogenic genes. Both RE and LE stimulated the activation of ERK, AKT, and CREB. Both RE and LE had no direct effect on osteoclastogenesis, but both increased Opg/Rankl ratio expression in osteoblast cells. Both RE and LE at 750 mg/kg/day significantly improved the trabecular and cortical microarchitecture of femur and tibia by increasing bone mineral density, bone volume fraction, trabecular number, and trabecular thickness, and decreasing trabecular separation and structural model index in ovariectomized mice. Furthermore, vertebral histology of lumbar vertebrae revealed that RE and LE significantly enhance the vertebral bone mass and exert osteo-protective effects by stimulating osteoblast function and inhibiting osteoclast function. CONCLUSION: In conclusion, both RE and LE stimulate osteoblast differentiation through activating ERK, AKT, and CREB signalling pathways and indirectly inhibits osteoclast differentiation. RE and LE also improve the trabecular and cortical microarchitecture of ovariectomized mice, making it a promising agent to prevent postmenopausal bone loss.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...